
MPMC LAB Manual ECE, MRCET

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY
(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTUH, Hyderabad, Approved by AICTE- Accredited by NBA & NAAC ‘A’ Grade – ISO 9001:2015 Certified)

Certificate

Department of Electronics and Communication Engineering Certified that in the

bonafide Record of the work done by Mr./Miss.

Reg.No of B.Tech

ECE year semester for the Academic year 20 to 20 in

 Laboratory.

Date: Staff Incharge HOD

Internal Examiner External Examiner

MPMC LAB Manual ECE, MRCET

MICROPROCESSORS & MICROCONTROLLERS

LAB MANUAL

B.TECH

IV YEAR – I SEM

2024-2025
(R20A0487)

Prepared by:

Mr. R.Sathish Kumar, Asst. Professor

Department of Electronics and Communication Engineering

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956
(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015
Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

1

ELECTRONICS & COMMUNICATION ENGINEERING

VISION

To evolve into a center of excellence in Engineering Technology through creative and

innovative practices in teaching-learning, promoting academic achievement & research

excellence to produce internationally accepted competitive and world class professionals.

MISSION

To provide high quality academic programmes, training activities, research facilities

and opportunities supported by continuous industry institute interaction aimed at

employability, entrepreneurship, leadership and research aptitude among students.

QUALITY POLICY

 Impart up-to-date knowledge to the students in Electronics & Communication

area to make them quality engineers.

 Make the students experience the applications on quality equipment andtools.

 Provide systems, resources and training opportunities to achieve

 continuous improvement.

 Maintain global standards in education, training and services.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

2

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: PROFESSIONALISM & CITIZENSHIP

To create and sustain a community of learning in which students acquire knowledge

and learn to apply it professionally with due consideration for ethical, ecological and

economic issues.

PEO2: TECHNICAL ACCOMPLISHMENTS

To provide knowledge based services to satisfy the needs of society and the industry by

providing hands on experience in various technologies in core field.

PEO3: INVENTION, INNOVATION AND CREATIVITY

To make the students to design, experiment, analyze, interpret in the core field with the

help of other multi disciplinary concepts wherever applicable.

PEO4: PROFESSIONAL DEVELOPMENT

To educate the students to disseminate research findings with good soft skills and become

a successful entrepreneur.

PEO5: HUMAN RESOURCE DEVELOPMENT

To graduate the students in building national capabilities in technology, education and

research.

PROGRAMME SPECIFIC OBJECTIVES (PSOs)

PSO1
To develop a student community who acquire knowledge by ethical learning and fulfill

the societal and industry needs in various technologies of core field.

PSO2
To nurture the students in designing, analyzing and interpreting required in research

and development with exposure in multi disciplinary technologies in order to mould them

as successful industry ready engineers/entrepreneurs

PSO3
To empower students with all round capabilities who will be useful in making nation

strong in technology, education and research domains.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

3

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex
engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation of
data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to
assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of,
and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or
leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and
write effective reports and design documentation, make effective presentations, and
give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s own work, as a
member and leader in a team, to manage projects and in multi disciplinary
environments.

12. Life- long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of
technological change.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

4

Course Objectives:

 To develop and execute variety of assembly language programs of Intel 8086
including arithmetic and logical, sorting, searching, and string manipulation
operations.

 To develop and execute the assembly language programs for interfacing Intel 8086
with peripheral devices.

 To develop and execute simple programs on 8051 micro controller.

Course Outcomes:

After going through this course the student will be able to

 The student will learn the internal organization of popular

8086/8051 microprocessors/microcontrollers.

 The student will learn hardware and software interaction and integration.

 To apply the concepts in the design of microprocessor/microcontroller based systems in
real time applications

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

5

LABORATORY RULES

General Rules of Conduct in Laboratories:

1. You are expected to arrive on time and not depart before the end of a laboratory.

2. You must not enter a lab unless you have permission from a technician or lecturer.

3. You are expected to comply with instructions, written or oral, that the laboratory

Instructor gives you during the laboratory session.

4. You should behave in an orderly fashion always in the lab.

5. You must not stand on the stools or benches in the laboratory.

6. Keep the workbench tidy and do not place coats and bags on the benches.

7. You must ensure that at the end of the laboratory session all equipment used is stored

away where you found it.

8. You must put all rubbish such as paper outside in the corridor bins. Broken

components should be returned to the lab technician for safe disposal.

9. You must not remove test equipment, test leads or power cables from any lab

without permission.

10. Eating, smoking and drinking in the laboratories are forbidden.

11. The use of mobile phones during laboratory sessions is forbidden.

12. The use of email or messaging software for personal communications during

laboratory sessions is forbidden.

13. Playing computer games in laboratories is forbidden.

Specific Safety Rules for Laboratories:

1. You must not damage or tamper with the equipment or leads.

2. You should inspect laboratory equipment for visible damage before using it. If there is a

problem with a piece of equipment, report it to the technician or lecturer. DONOT return

equipment to a storage area

3. You should not work on circuits where the supply voltage exceeds 40 volts without very

specific approval from your lab supervisor. If you need to work on such circuits, you should

contact your supervisor for approval and instruction on how to do this safely before

commencing the work.

4. Always use an appropriate stand for holding your soldering iron.

5. Turn off your soldering iron if it is unlikely to be used for more than 10 minutes.

6. Never leave a hot soldering iron unattended.

7. Never touch a soldering iron element or bit unless the iron has been disconnected from

the mains and has had adequate time to cool down.

8. Never strip insulation from a wire with your teeth or a knife, always use an appropriate

wire stripping tool.

9. Shield wire with your hands when cutting it with a pliers to prevent bits of wire flying

about the bench.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

6

INDEX

PART-A

1. Introduction to MASM 7

2. 16-bit Arithmetic Operations 12

3. Sorting of Array for 8086 26

4. Searching for Character in a String 37

5. Sting Manipulations for 8086 45

PART-B

6. Introduction to Hardware experiments 72

7. Digital Clock Design using 8086 81

8. Interfacing ADC&DAC to 8086 88

9. Parallel Communication between Two Microprocessors using 8255 94

10. Interfacing stepper to 8086 98

11. Arithmetic, Logical and Bit Manipulation Instructions of 8051 104

12. Timer/Counters in 8051 114

13. Interrupt Handling in 8051 118

14. UART Operation in 8051 122

15. Interfacing LCD to 8051 126

16. Interfacing Matrix keyboard to 8051 133

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

7

INDEX

S.No

Date

Name of the Experiment

Page No

Signature of

faculty

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

8

PART-A

1. INTRODUCTION TO MASM

EDITOR

An editor is a program, which allows you to create a file containing the assembly language

statements for your program. As you type in your program, the editor stores the ASCII codes for the

letters and numbers in successive RAM locations. When you have typed in all of your programs, you

then save the file on a floppy of hard disk. This file is called source file. The next step is to process

the source file with an assembler. In the MASM /TASM assembler, you should give your source file

name the extension, .ASM

ASSEMBLER

An assembler program is used to translate the assembly language mnemonics for

instructions to the corresponding binary codes. When you run the assembler, it reads the source

file of your program from the disk, where you saved it after editing on the first pass through the

source program the assembler determines the displacement of named data items, the offset of

labels and pails this information in a symbol table. On the second pass through the source program,

the assembler produces the binary code for each instruction and inserts the offset etc that is

calculated during the first pass. The assembler generates two files on floppy or hard disk. The first

file called the object file is given the extension. OBJ. The object file contains the binary codes for the

instructions and information about the addresses of the instructions. The second file generated by

the assembler is called assembler list file. The list file contains your assembly language statements,

the binary codes for each instructions and the offset for each instruction. In MASM/TASM

assembler, MASM/TASM source file name ASM is used to assemble the file. Edit source file name

LST is used to view the list file, which is generated, when you assemble the file.

LINKER

A linker is a program used to join several object files into one large object file and convert

to an exe file. The linker produces a link file, which contains the binary codes for all the combined

modules. The linker however doesn’t assign absolute addresses to the program, it assigns is said to

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

9

be reloadable because it can be put anywhere in memory to be run. In MASM/TASM, LINK/TLIN8K

source filename is used to link the file.

DEBUGGER

A debugger is a program which allows you to load your object code program into system

memory, execute the program and troubleshoot are debug it the debugger allows you to look at the

contents of registers and memory locations after your program runs. It allows you to change the

contents of register and memory locations after your program runs. It allows you to change the

contents of register and memory locations and return the program. A debugger also allows you to

set a break point at any point in the program. If you inset a breakpoint the debugger will run the

program up to the instruction where the breakpoint is set and stop execution. You can then examine

register and memory contents to see whether the results are correct at that point. In MASM/TASM,

td filename is issued to debug the file.

DEBUGGER FUNCTIONS:

1. Debugger allows looking at the contents of registers and memory locations.

2. We can extend 8-bit register to 16-bit register which the help of extended registeroption.

3. Debugger allows setting breakpoints at any point with the program.

4. The debugger will run the program up to the instruction where the breakpoint is set and

then stop execution of program. At this point, we can examine registry and memory contents

at that point.

5. With the help of dump we can view register contents.

6. We can trace the program step by step with the help of F7.

7. We can execute the program completely at a time using F8

The DOS -Debugger:

The DOS “Debug” program is an example of simple debugger that comes with MS-DOS.

Hence it is available on any PC .it was initially designed to give the user the capability to trace

logical errors in executable file.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

10

Below, are summarized the basic DOS - Debugger commands

COMMAND SYNTAX

Assemble A [address]

Compare C range address

Dump D [range]

Enter E address [list]

Fill F range list

Go G [=address] [addresses]

Hex H value1 value2

Input I port

Load L[address] [drive][first sector][number]

Move M range address

Name N[pathname][argument list]

Output O port byte

Proceed P [=address][number]

Quit Q

Register R[register]

Search S range list

Trace T [=address][value]

Unassembled u [range]

Write W[address][drive][first sector][number]

MS-MASM:

Microsoft’s Macro Assembler (MASM) is an integrated software package Written by

Microsoft Corporation for professional software developers. It consists of an editor, an assembler,

a linker and a debugger (Code View). The programmer’s workbench combines these four parts into

a user-friendly programming environment with built in on line help. The following are the steps used

if you are to run MASM from DOS

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

11

MICROPROCESSOR LAB EXECUTION PROCEDURE

STEP1: Opening the DOS prompt

Click start menu button and click on Run and then type cmd at command prompt

immediately DOS window will be appeared

STEP2: Checking the masm installation

To know MASAM is installed or not simply type masm at the command prompt upon that it

replies masm version vendor (Microsoft), etc... If you get any error there is no masm in that PC

STEP3: Directory changing (create a folder with your branch and no in D drive)

Change the current directory to your won directory suppose your folder in D drive type the

following commands to change the directory at command prompt type D: hit enter now you are in

D drive type cd folder name hit the enter

Example: D cd ece10

Now we are in folder cse10

STEP4: writing the program

At the command prompt type the edit programname.asm

Example. Edit add.asm

Immediately editor window will open and there you have to write the program. Type the

program in that window after completion save the Program, to save the program Go to file opt in

the menu bar and select save opt now your code is ready to Assemble.

STEP5: Assembling, Linking and executing the program

Go to file opt click exit opt now DOS prompt will be displayed to assemble the program

type the following commands at the DOS prompt

Masm Program Name, Program Name, Program Name, Program Name hit the enter

Example: Masm add, add, add, add enter

OR

Example: Masm add.asm

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

12

If there are any errors in the program assembler reports all of them at the command prompt

with line no’s, if there are now bugs your ready to link the program. To link the program type the

following line at command prompt Link program name,,,,, (5 commas)

Example: Link add,,,,,

OR

Example: link add.obj

After linking you are ready to execute the program. To execute the program type the following

command

Debug program name.exe hit the enter

Example: Debug add.exe

Now you entered into the execution part of the program here you have to execute the

program instruction by instruction (debugging) first of all press the r key(register) hit the enter key

it’ll displays all the registers and their initial values in HEXDECIMAL note down the values of all the

register which are used in the program. To execute the next instruction press t key (TRACE) hit the

enter it’ll execute that instruction and displays the contents of all the register. You have to do this

until you reach the last instruction of the program. After execution you have to observe the results

(in memory or registers based on what you have written in the program).

STEP6: Copying list file (common for all programs):

A list file contains your code starting address and end address along with your program

.For every program assembler generates a list file at your folder, programname.lst (ex. Add.lst) you

should copy this to your lab observation Opening a list file

Edit programname.lst

Example. Edit add.lst

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

13

EXPERIMENT NO.2

16 BIT ARITHMETIC OPERATIONS

AIM: Write an ALP to 8086 to perform 16-bit arithmetic operations in various Addressing Modes

TOOLS: PC installed with MASM

ALGORITHM:

Step I : Initialize the Data segment memory.

Step II : Initialize the Extra segment memory.

Step III : Load the first number into AX register.

Step IV : Add two numbers.

Step V : Store the result in Extra segment.

Step VI : Terminate the program

Step VII : Stop.

FLOW CHART:

AXAX+OPR2

SUMAX

AXOPR1

INITIALIZATION OF DATA

& EXTRA SEGMENT

START

STOP

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

14

PROGRAM:

(A) 16-bit addition using different addressing modes

ASSUME CS: CODE, DS: DATA, ES: EXTRA

DATA SEGMENT

OPR1 DW 5169H

OPR2 DW 1000H

DATA ENDS

EXTRA SEGMENT

SUM DW ?

EXTRA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX ; REGISTER ADDRESING MODE

MOV AX, OPR1 ; DIRECT ADDRESSING MODE

ADD AX, OPR2 ; DIRECT ADDRESSING MODE

MOV SUM, AX ; DIRECT ADDRESSING MODE

INT 03H

CODE ENDS

END START

END

(B) 16-bit subtraction using different addressing modes

ALGORITHM:

Step I : Initialize the data & extra segment memory.

Step II : Load the first number into AX register.

Step IV : Sub AX from OPR2.

Step V : Store result in extra segment

Step VI : verify the result.

Step VII : Stop.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

15

STOP

AXAX-OPR2

DIFFAX

AXOPR1

START

INITIALIZATION OF DATA

SEGMENT

FLOW CHART:

PROGRAM:

ASSUME CS:CODE, DS: DATA,ES:EXTRA

DATA SEGMENT

OPR1 DW 5169H

OPR2 DW 1000H

DATA ENDS

EXTRA SEGMENT

DIFF DW ?

EXTRA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX ; REGISTER ADDRESIING MODE

MOV AX, EXTRA

MOV ES, AX ; REGISTER ADDRESIING MODE

MOV BX, OFFSET OPR1 ; DIRECT ADDRESSING MODE

MOV AX, [BX] ; BASE ADDRESSING MODE/

SUB AX, OPR2 ; DIRECT ADDRESSING MODE

MOV DIFF, AX ; DIRECT ADDRESSING MODE

INT 03H

CODE ENDS

END START

END

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

16

(C) 16-bit Multiplication using different addressing modes

ALGORITHM:

Step I : Initialize the data & extra segment memory.

Step II : Load the first number into AX register.

Step III : Load the second number into BX register.

Step IV : Multiply AX with BX.

Step V : store lower word in accumulator into extra segment.

Step VI : Store Upper word in DX register into extra segment

Step VII : Verify the result.

Step VIII : Stop.

FLOW CHART:

AXOPR1

BXOPR2

INITIALIZATION OF DATA

& EXTRASEGMENT

MULTIPLY THE TWO

NUMBERS & STORE THE

RESULT IN EXTRA

SEGMENT

STOP

START

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

17

PROGRAM:

ASSUME CS: CODE, DS: DATA, ES: EXTRA

DATA SEGMENT

OPR1 DW 5169H

OPR2 DW 1000H

DATA ENDS

EXTRA SEGMENT

RES DW 2 DUP(0)

EXTRA ENDS

CODE SEGMENT

START:MOV AX,DATA

MOV DS,AX ; REGISTER ADDRESIING MODE

MOV AX,EXTRA

MOV ES, AX ; REGISTER ADDRESIING MODE

MOV SI,OFFSET OPR1

MOV AX,[SI] ; INDEXED ADDRESSING MODE

MOV BX,OPR2 ; DIRECT ADDRESSING MODE

MUL BX ; REGISTER ADDRESSING MODE

MOV RES, AX ; DIRECT ADDRESSING MODE

MOV RES+2, DX ; DIRECT ADDRESSING MODE

INT 03H

CODE ENDS

END START

END

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

18

(D) 16-bit Division using different addressing modes

ALGORITHM:

Step I : Initialize the data & extra segment memory.

Step II : Load the first number into DX:AX registerpair.

Step III : Load the second number into BX register.

Step IV : Divide DX:AX pair by BX.

Step V : store the Quotient in AX register into extra segment. Step

VI : Store the reminder in DX register into extra segment.

Step VII : Verify the result.

Step VIII : Stop.

FLOW CHART:

LOAD THE NUMBERS INTO RESPECTIVE

REGISTERS

DIVISION OF DX:AX BY BX

INITIALIZATION OF DATA &EXTRA SEGMENT

STORE THE RESULT INTO THE EXTRA SEGMENT

STOP

START

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

19

PROGRAM:

ASSUME CS: CODE, DS:DATA, ES:EXTRA

DATA SEGMENT

OPR1 DD 74105169H

OPR2 DW 7875H

DATA ENDS

EXTRA SEGMENT

DIVQ DW ?

DIVR DW ?

EXTRA ENDS

CODE SEGMENT

START:MOV AX, DATA

MOV DS, AX ; REGISTER ADDRESIING MODE

MOV AX, EXTRA

MOV ES, AX ; REGISTER ADDRESIING MODE

MOV SI, OFFSET OPR1

MOV AX, [SI] ; INDEXED ADDRESSING MODE/

MOV DX, [SI+2] ; INDEXED ADDRESSING MODE

MOV BX, OPR2 ; DIRECT ADDRESSING MODE

DIV BX ; REGISTER ADDRESSING MODE

MOV DIVQ , AX

MOV DIVR , DX

INT 03H

CODE ENDS

END START

END

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

20

Result:

UNSIGNED NUMBERS

INPUT: OPR1 =

OPR2 =

OUTPUT: ALL RESULTS ARE STORED IN EXTRA SEGMENT (ES)

SUM =

DIFF=

MUL=

MUL+2=

DIVQ=

DIVR=

Exercise Questions:

1) Write an assembly language program for the expression ax+b

2) Write an assembly language program for the squaring of 16 bit Hexa Decimal number.

3) Write an assembly language program for the factorial of 8 bit Hexadecimal number.

Viva Question:

1) What is meant by microprocessor?

2) What is meant by accumulator?

3) What is meant by assembler directive?

4) What are segment Registers?

5) What is the use of INT 03H instruction?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

21

EXPERIMENT NO.3

SORTING AN ARRAY FOR 8086

AIM: Write and execute an ALP to 8086 processor to sort the given 16-bit numbers in

Ascending and Descending order.

TOOLS: PC installed with MASM 6.11

ALGORITHM:

Step I: Initialize the data segment memory.

Step II : Initialize the number of elements counter

Step III : Initialize the comparisons counter..

Step IV: Load the numbers into respective registers

Step V: Compare the elements. If first element < second element goto step VII

Else go to next step.

Step VI: Swap the numbers in the memory..

Step VII: Increment memory pointer & Decrement the comparison counter.

Step VIII: Is count = 0 ? if yes go to next step else go to step IV.

Step IX: decrement the element counter.

Step X: Is count not 0 ? go Step III else go to next step

Step IX: Stop & terminate the program.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

22

BACK: CXDX

DXCOUNT-1

INITIALIZATION OF

DATA SEGMENT

START
FLOW CHART:

IF
AX < [SI+2]

IF

CX=0

IF

DX=0

STOP

TRUE

TRUE

FALSE

DECREMENT DX

TRUE

FALSE

INCREMENT SI BY 2

EXCHANGE

[SI] &[SI+2]

FALSE

AX[SI]

SIOFFSET

ADDRESS OF LIST

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

23

PROGRAM:

ASCENDING ORDER

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DW 0125H,0144H,3001H,0003H,0002H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START:MOV AX,DATA

MOV DS,AX

MOV DX,COUNT-1

BACK: MOV CX,DX

MOV SI, OFFSET LIST

AGAIN: MOV AX,[SI]

CMP AX,[SI+2]

JC GO

XCHG AX,[SI+2]

XCHG AX,[SI]

GO:INC SI

INC SI

LOOP AGAIN

DEC DX

JNZ BACK

INT 03H

CODE ENDS

END START

END

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

24

Result:

INPUT: (DS: 0000H) = 25H,01H,44H,01H,01H,30H,03H,00H,02H,00H

OUTPUT: (DS: 0000H) =

DESCENDING ORDER
ALGORITHM:

Step I: Initialize the data segment memory.

Step II : Initialize the number of elements counter

Step III : Initialize the comparisons counter..

Step IV: Load the numbers into respective registers

Step V: Compare the elements. If first element > second element go to step VII

Else go to next step.

Step VI: Swap the numbers in the memory.

Step VII: Increment memory pointer & Decrement the comparison counter.

Step VIII: Is count = 0? If yes go to next step else go to step IV.

Step IX: decrement the element counter.

Step X: Is count not 0? go Step III else go to next step Step IX: Stop & terminate the program.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

25

DXCOUNT-1

INITIALIZATION OF

DATA SEGMENT

BACK : CXDX

START

FLOW CHART:

IF
AX > [SI+2]

IF

CX=0 ?

IF

DX=0 ?

STOP

TRUE

FALSE

DECREMENT DX

TRUE

FALSE

INCREMENT SI BY 2

EXCHANGE

[SI] &[SI+2]

FALSE

TRUE

AGAIN: AX[SI]

SIOFFSET ADDRESS

OF LIST

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

26

DESCENDING ORDER

PROGRAM:

ASSUME CS: CODE, DS:DATA

DATA SEGMENT

LIST DW 0125H,0144H,3001H,0003H,0002H

COUNT EQU 05H

DATA ENDS

CODE SEGMENT

START:MOV AX,DATA

MOV DS,AX

MOV DX,COUNT-1

BACK:MOV CX,DX

MOV SI,OFFSET LIST

AGAIN:MOV AX,[SI]

CMP AX,[SI+2]

JAE GO

XCHG AX,[SI+2]

XCHG AX,[SI]

GO:INC SI

INC SI

LOOP AGAIN

DEC DX

JNZ BACK

INT 03H

CODE ENDS

END START

END

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

27

Result:

INPUT: (DS: 0000H) = 25H,01H,44H,01H,01H,30H,03H,00H,02H,00H

OUTPUT: (DS: 0000H) =

Exercise Questions:

1) Write an assembly language program for finding the maximum number in array of five16

bit hexadecimal numbers?

2) Write an assembly language program for finding the minimum number in array of five 16

bit hexadecimal numbers?

Viva Questions:

1) What is the use of SI Register?

2) What is the use of XCHG instruction?

3) What is the use of CX Register ?

4) What is the use of JNZ instruction?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

28

EXPERIMENT NO: 4

SEARCH ING FOR CHARACTER IN A STRING

AIM: Write an ALP for searching for a number or character in a string for 8086.

TOOLS: PC installed with MASM 6.11

ALGORITHM:

Step I : Initialize the Data segment (DS) & Extra segment(ES)

Step II : Load the offset address of the string into SI .

Step III : Load the number of elements in the string into CX register

Step IV : Move the character to be searched into the AL register

Step V : Scan for the character in ES. If the character is not found go to step VII else go
to next step.

Step VI : Display the message that character found and go to step VIII

Step VII : Display the message that character not found

Step VII : Stop.& Terminate the program

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

29

SEARCH FOR

CHARACTER

YES

ALCHARACTER CXCOUNT,

SI, OFFSET LIST

INITIALIZATION OF DATA

&EXTRA SEGMENT

START

STOP

TERMINATE THE

PROGRAM

FLOW CHART:

NO

DISPLAY THE MESSAGE

“CHARACTER NOT FOUND”

DISPLAY THE MESSAGE

“CHARACTER FOUND”

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

30

Program:

ASSUME CS: CODE, DS: DATA
DATA SEGMENT

STRING DB 'MRCET$'

SLEN EQU ($-STRING)

CHAR DB 'E'

MSG1 DB 'THE CHARACTER IS FOUND$'

MSG2 DB 'THE CHARACTER IS NOT FOUND$'

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX

MOV ES, AX

LEA SI, STRING

MOV CX, LEN

MOV AL, CHAR

CLD

REPNE SCASB

JNZ EXIT

LEA DX, MSG1

MOV AH, 09H

INT 21H

JMP GOTOEND

EXIT: LEA DX, MSG2

MOV AH, 09H

INT 21H

GOTOEND: MOV AH, 4CH

INT 21H

CODE ENDS

END START

END

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

31

Exercise Questions:

1) Write an assembly language program for the password verification?

Viva Questions:

1) What is the use of SCASB Register?

2) What is the use of REPNE instruction?

3) What is the relation of CX Register with REPNE?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

32

EXPERIMENT NO.5

STRING MANIPULATIONS FOR 8086

AIM: To write an assembly language program to move the block of data from a source

BLOCK to the specified destination BLOCK.

TOOLS: PC installed with MASM 6.11

A) BLOCK TRANSFER

ALGORITHM:

Step I : Initialize the Data segment (DS) & Extra segment (ES)

Step II : Load the offset address of source and destination the string into SI and DI.

Step III : Load the number of elements of the string into Count register(CL)

Step IV : Clear Direction flag (DF) to make SI and DI into auto increment mode

Step V : move the character by character from source to destination till the end

Step VI : Stop & Terminate the program

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

33

Move the character by character from source to

destination till the end

IININNIITITTIIAIAALLLIIZIZZAAATTTIIOIOONNN OOOFFF DDDAAATTTAAA &&&EEEXXXTTTRRRAAA
SS

LLLoooaaaddd ttthhheee oooffffffssseeettt aaaddrddrddreeessssss ooofff sssooourururccceee aaannnddd
dededessstiiittnannaatiiittooonnn

tt ii ii

LLLoooaaaddd ttthhheee nnnuuummmbebeberrr ooofff eeellleeemmmeeennntttsss ooofff ttthhheee ssstttrrriiinnnggg iiinnntttooo

CCCooounununtttrrreeegggiiisssttteeerrr(((CCCLLL))) CCCllleeeaaarrr DDDiiirrreeeccctttiiiooonnn ffflllaaag(g(g(DDDFFF)))

FLOW CHART:

PROGRAM:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

STRING DB ‘MICROPROCESSOR$’

COUNT EQU ($-STRING)

ORG 0070H

DATA ENDS

EXTRA SEGMENT

ORG 0010H

START

INITIALIZATION OF DATA &EXTRA SEGMENT

STOP

Move the character by character from source to

destination till the end

Load the number of elements of the string into Count

register(CL) Clear Direction flag(DF)

Load the offset address of source and destination

the string into SI and DI.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

34

STRING1 DB ?

EXTRA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AX, EXTRA

MOV ES,AX

MOV SI,OFFSET STRING

MOV DI,OFFSET STRING1

MOV CL,COUNT

CLD

REP MOVSB

INT 03H

CODE ENDS

END START

END

RESULT:

INPUT: (DS: 0000H) = MICROPROCESSOR

OUTPUT: (ES: 0010H) = MICROPROCESSOR

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

35

STOP

B) REVERSE STRING

AIM: To write an assembly language program to reverse the given string.

TOOLS: PC installed with MASM 6.11

ALGORITHM:

Step I : Initialize the Data segment (DS) & Extra segment (ES)

Step II : Load the offset address of source and destination the string into SI and DI.

Step III : Load the number of elements of the string into Count Register (CX)

Step IV : Add CX to DI to Point to last location of the memory

Step V : move the character by character from source to destination till the end

Step VI : Stop & Terminate the program

FLOW CHART:

 Load the number of elements of the string into

Count register(CX)

Add CX to DI to Point to last location of the

Move the character by character from source to

destination till the end

START

INITIALIZATION OF DATA &EXTRA SEGMENT

Load the offset address of source and destination

the string into SI and DI.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

36

PROGRAM:

ASSUME CS: CODE, DS: DATA ,ES:EXTRA

DATA SEGMENT

STRING1 DB 'MICROPROCESSOR$'

STRLEN EQU ($-STRING1)

DATA ENDS

EXTRA SEGMENT

STRING2 DB ?

EXTRA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX

MOV AX, EXTRA

MOV ES, AX

MOV SI, OFFSET STRING1

MOV DI, OFFSET STRING2

MOV CX, STRLEN-1

ADD DI, CX

MOV DL,'$'

MOV ES:[DI],DL

AGAIN: DEC DI

MOV AL,DS:[SI]

MOV ES:[DI],AL

INC SI

DEC CX

JNZ AGAIN

INT 3H

RESULT:

INPUT: ' MICROPROCESSOR’
OUTPUT: ‘ROSSECORPORCIM’

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

37

START

STOP

Decrement CL

ZF=0?

YES

NO

Compare AL with last character of the string

i.e. $ and increment CL until ZF=0

Move the each character from memory to to

Accumulator (AL) and Increment CL

Initialize the counter CL with 0

Move stating address of the string to SI register

Initialization of Data Segment

C) LENGTH OF THE STRING

AIM: To write an assembly language program to find the length of the given string.

TOOLS: PC installed with MASM 6.11

ALGORITHM:

Step I : Initialize the data segment (DS)

Step II : Initialize the counter CL with 0

Step III : Move stating address of the string to SI register

Step IV : Move the each character from memory to to Accumulator (AL)

Step V : Compare AL with last character of the string i.e $ and increment CL until ZF=0

Step VII : Store the result

Step VIII : Stop.

FLOW CHART:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

38

Program:

ASSUME CS:CODE, DS:DATA

DATA SEGMENT

STRING1 DB 'MICROPROCESSOR AND INTERFACING LAB$'

SLENGTH DB 0

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX

SUB CL, CL

MOV SI, OFFSET STRING1

CLD

BACK: LODSB

CODE ENDS

END START

INC CL

CMP AL,'$'

JNZ BACK

DEC CL

MOV SLENGTH, CL

INT 03H

RESULT: INPUT: 'MICROPROCESSOR AND INTERFACING LAB

 OUTPUT:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

39

D) STRING COMPARISON

AIM: Write an ALP to 8086 to compare the given strings.

TOOLS: PC installed with MASM 6.11

ALGORITHM:

Step I : Initialize the data segment (DS) & extra Segment as per requirement

Step II : Load the offset address of source and destination of the string into SI and DI.

Step III : Initialize the counter register CX with length of source string

Step IV : Clear Direction flag (DF) to make SI and DI into auto increment mode

Step V : Compare source string with destination string until the characters are not equal
or up to last last character

Step VII : If ZF=0 the strings are equal or otherwise the strings are not equal

Step VIII : Stop.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

40

ZF=0

YES

START

The strings are equal

The strings are NOT equal

NO

FLOW CHART:

Clear Direction flag(DF) to make SI and DI into

auto increment mode

Compare source string with destination string until

the characters are not equal or up to last character

START

Load the offset address of source and destination the

string into SI and DI.

Initialization of data & extra segment

Initialize the counter register CX with length of

source string

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

41

Program:
ASSUME CS: CODE, DS:DATA, ES:EXTRA

DATA SEGMENT

STRING1 DB 'MRCET'

STRLEN EQU ($-STRING1)

SNOTEQUAL DB 'STRINGS ARE UNEQUAL$'

SEQUAL DB 'STRINGS ARE EQUAL$'

DATA ENDS

EXTRA SEGMENT

STRING2 DB 'MRCET'

EXTRA ENDS

CODE SEGMENT

START: MOV AX,DATA

MOV DS,AX

MOV AX,EXTRA

MOV ES,AX

MOV SI,OFFSET STRING1

MOV DI,OFFSET STRING2

CLD

MOV CX,STRLEN

REPZ CMPSB

JZ FORW

MOVAH, 09H

MOV DX, OFFSET SNOTEQUAL

INT 21H

JMP EXITP

FORW: MOV AH,09H

MOV DX, OFFSET SEQUAL

INT 21H

EXITP: MOV AH, 4CH

INT 03H

CODE ENDS

END START

RESULT: INPUT: OUTPUT:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

42

(E) STRING INSERTION

AIM: To Write and execute an Assembly language Program (ALP) to 8086 processor to insert or

delete a character/ number from the given string.

TOOLS: PC installed with MASM 6.11

ALGORITHM:

Step I :Initialize the data segment (DS) & extra segment (ES)

Step II :Load the offset address of source and destination of the string into SI and DI.

Step III :Initialize the counter register CX with length of first part of source string

Step IV : Copy the first part of STRING1 in to STRING3 of extra segment

Step V : Load the offset address of STRING2 in to SI

Step VI : Copy the STRING2 in to STRING3 of extra segment after first string of STRING1

Step VII: Load the new offset address of source of the STRING1 into SI

Step VIII: Copy the second part of STRING1 in to extra segment

Step IX: Stop

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

43

FLOW CHART:

Clear Direction flag (DF) to make SI and DI into auto increment mode

Initialize the counter register CX with length of first part of source string

Load the offset address of source and destination string into SI and DI.

Initialization of data & extra segment

START

Copy the first part of STRING1 in to STRING3 of extra segment

Load the offset address of STRING2 in to SI

Load the new offset address of source of the STRING1 into SI

Load the new offset address of source of the STRING1 into SI

Copy the STRING2 in to STRING3 of extra segment after first string

of STRING1

Copy the second part of STRING1 in to extra segment

STOP

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

44

Program:

ASSUME CS:CODE,DS:DATA,ES:EXTRA

DATA SEGMENT

STRING1 DB 'MICROPROCESSOR INTERFACING LAB$'

STRING2 DB ‘AND ’

STRLEN EQU ($-STRING1)

ORG 0070H

DATA ENDS

EXTRA SEGMENT

ORG 0010H

STRING3 DB 38 DUP(0)

EXTRA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX

MOV AX, EXTRA

MOV ES, AX

MOV SI, OFFSET STRING1

MOV DI, OFFSET STRING3

CLD

MOV CX, 15

REP MOVSB

CLD

MOV SI, OFFSET STRING2

MOV CX,4

REP MOVSB

MOV SI, OFFSET STRING1

ADD SI,15

MOV CX, 15

REP MOVSB

INT 3H

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

45

CODE ENDS
END START

RESULT:

INPUT: STRING1: 'MICROPROCESSOR INTERFACING LAB'

STRING2:‘AND ’

OUTPUT: STRING3: ‘MICROPROCESSOR AND INTERFACING LAB'

(F) STRING DELETION

ASSUME CS: CODE, DS:DATA, ES:EXTRA

DATA SEGMENT

STRING1 DB 'MICROPROCESSOR AND INTERFACING LAB$'

ORG 0070

DATA ENDS

EXTRA SEGMENT

ORG 0010H

STRING2 DB 40 DUP (0)

EXTRA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX

MOV AX, EXTRA

MOV ES, AX

MOV SI, OFFSET STRING1

MOV DI, OFFSET STRING2

CLD

MOV CX, 15

REP MOVSB

CLD

MOV SI, OFFSET STRING1

ADD SI, 19

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

46

CODE ENDS

END START

MOV CX, 15

REP MOVSB

INT 03H

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

47

RESULT:

INPUT: STRING1: MICROPROCESSOR AND INTERFACING LAB'

OUTPUT: STRING2: 'MICROPROCESSOR INTERFACING LAB'

Exercise Questions:

1) Write an assembly language program for the palindrome of a given string?

2) Write an assembly language program for the display of given string?

Viva Questions:

1) What are the string manipulation instructions?

2) What are the repeat instructions?

3) What is the use of DUP instruction?

4) What is the meaning of ORG assembler Directive?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

48

PART-B

INTRODUCTION TO HARDWARE EXPERIMENTS

8086 Programs can also executed by using ADM TK_µP Trainer kits. The Assembly language

programs (ALP) can be executed by the following steps

1. UxAsm

2. TKµP

1. UxAsm: It is used to translate the Assembly language program in to Machine language

(Hex File).The input file to the UxAsm is .asm and one of the output files is hex file

Procedure for UXASM:

1. Go to start and select UXAsm

2. Verify the license by observing the following window and click “OK”

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

49

3. Go to file and select “open source” and browse the source file(.ASM file)

4. Observe the following window which shows the source code.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

50

5. Again go to file select “New Project”

6. To add source file click on “Add File” and browse the source file and provide the source file

path with .Uxa extension in the Project and press Tab and Press “Save” and click on “OK”

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

51

7. Observe the following window and double click on path of the File to view theprogram

8. To save the project go to File select “save project”

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

52

9. To compile the program, click on “C” and observe the following window

10. If any errors, Fix the errors, click on “OK” and click on “B” to build the program

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

53

TKμP

INTRODUCTION:

TKμP is an ideal trainer cum development boards for Microprocessors like Z80, 8032, 8085,

8088 and 8086. All interface is provided through 10 pin polarized Box Headers. TKμP user interface

software communicates with the TKμP hardware through PC parallel port LPT1 and provides fast

download of hex files. The PC user interface can open multiple windows for memory Dump and List.

Multiple dump windows is also useful to study memory move operations and programs.

TKμP is made up of three sections:

1. CPU specific daughter board.

2. Base board section: It has following features

 Four sockets for memory which can accommodate maximum 4x128KB.

 8279 key board display controller.

 8255 IO expander.

 8155 IO expander with timer counter.

 8251 Asynchronous serial Transmitter and Receiver.

3. User interface section: It has following features

 Hex keypad.

 8-Leds indicator.

 Four multiplexed 7-Segment displays.

 LCD 16 characters x 2 lines.

 I2C NVRAM 24C1024.

 I2C RTC PCF8583.

 I2C ADC/DAC PCF8591.

 Serial port interface through MAX232.

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

54

Procedure for TKµP

1. Go to start and select TKµP

2. To Test the I/O connection clicks on Test I/O and click on OK

3. The following window will be displayed and go to window, select tile to avoid the overlap of

windows

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

55

4 .To clear the garbage data from dump window, go to Listmem and select fillmem

5. To clear the data from dump window, enter start and, end address and fill the data with 00

6. To load the hex file ,go to “Listmem” and select “HexLoad”

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

56

7. Browse the hex file from the source and click on “Load”

8. To view the program on the window, go to “Listmem” and selectaddress

9. Enter the starting address of the program click “OK”

10. To verify the output, change the “SW-PP PROGRAM” switch to execution mode and verify

output

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

57

EXPERIMENT NO: 6

DIGITAL CLOCK DESIGN USING 8086

AIM: Write an ALP for digital clock design using 8086

TOOLS:

i. UXASM

ii. TKUP

iii. TKUP86 KIT

iv. FRC CABLE

PROGRAM:

; CONNECT BH4 (PORT A) TO CNLED

#INCLUDE "TKUP86.DEF"

;******* INCLUDE EXTERNS NOW

;******* START CODING HERE

ORG 0FFFF0H

JMPF 0F000H,0F000H ; the basic reset jump

ORG 0FF000H

START: MOV SP,STKPTR

CALL INIT8255

MOV AL,0CH

MOV [0200H], AL

MOV AL, 00H

NXTHR: MOV CX, 003CH

NXTMNT: MOV BX,003CH

NXTSEC: CALL SECDLY

MOV DX,PA8255

MOV AL, 07H

OUT DX,AL

DEC BX

JNE NXTSEC

; load stack pointer

; initialize 825

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

58

MOV DX,PA8255

MOV AL,38H

OUT DX,AL

DEC CX

JNE NXTMNT

MOV DX, PA8255

MOV AL, 0C0H

OUT DX, AL

MOV AX,[0200H]

DEC AX

MOV [0200H], AX

JNE NXTHR

SECDLY: PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV CX, 1234H

DLY: NOP

NOP

LOOP DLY

POP DX

POP CX

POP BX

POP AX

RET

;******* initialize 8255

INIT8255

MOV AL,080H

MOV DX, CMD8255

OUT DX,AL

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

59

MOV AL,00H

OUT DX,AL

MOV DX,PB8255

OUT DX,AL

MOV DX,PC8255

OUT DX,AL

RET

RESULT: INPUT:

OUTPUT:

Exercise Questions:

1) Write an assembly language program for the different clock rates to display the clock on

the LCD.

Viva Questions:

1) What is the use of IN and OUT instructions?

2) What is meant by procedure?

3) What is meant by PPI?

4) What are the modes of 8255?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

60

EXPERIMENT NO: 7

PROGRAM FOR INTERFACING ADC&DAC TO 8086

AIM: Write an ALP for interfacing ADC to 8086

TOOLS:

i. UXASM

ii. TKUP

iii. TKUP86 KIT

iv. FRC CABLE

v. ADC KIT

PROGRAM:
; CONNECT BH4 (PORT A) TO DAC BH1A

; CONNECT BH5 (PORTB) TO DAC BH2B

; CONNECT CRO PROBES TO CND1_1 OF DAC

#INCLUDE "TKUP86.DEF"

DATA SEGMENT

PORTA EQU 9000H

PORTC EQU 9004H

CNTLPRT EQU 9006H

MEM DW 2000H

DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS: DATA

START: MOV AX, DATA

MOV DS, AX

MOV DX, CNTLPRT

MOV AL, 98H

OUT DX, AL

MOV AL, 01H

OUT DX, AL

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

61

MOV AL, 00

OUT DX, AL

MOV DX, PORTC

CHK: IN AL, DX

AND AL, 80H

JZ CHK

MOVDX, PORTA

IN AL, DX

MOV MEM, AL

INT 03H

CODE ENDS

END START

RESULT: INPUT :

OUTPUT :

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

62

INTERFACING DAC TO 8086

AIM: Write an ALP for interfacing DAC to 8086

TOOLS:
i. UXASM

ii. TKUP
iii. TKUP86 KIT
iv. FRC CABLE

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

63

PROGRAM:

; CONNECT BH4 (PORT A) TO DAC BH1A

; CONNECT BH5 (PORTB) TO DAC BH2B

; CONNECT CRO PROBES TO CND1_1 OF DAC

#INCLUDE "TKUP86.DEF"

ORG 0FFFF0H

JMPF 0F000H,0F000H
ORG 0FF000H

MOV AL,080H

MOVDX,CMD8255

OUT DX,AL

MOV AL,00H

MOV DX,PA8255

OUT DX,AL

MOV DX,PB8255

OUT DX,AL

MOV DX,PC8255

OUT DX,AL

RPT: MOV AL,00H

MOV AL,0FFH

AGAIN: MOV DX, PA8255

OUT DX, AL

CALL DELAY

CALL DELAY

CALL DELAY

CALL DELAY

CALL DELAY

CALL DELAY

INC AX

JNE AGAIN

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

64

JMP RPT

DELAY: MOV CX, 0FF00H

NXT2: MOV BX, 1234H

NXT: NOP

NOP

NOP

NOP

NOP

DEC BX

JNE NXT

RET

RESULT: INPUT :

OUTPUT :

Exercise Questions:

1) Write an assembly language program to convert a saw tooth wave into digital.

2) Write an assembly language program for the generation of triangularwave

Viva Questions:

1) What is the function of INC Instruction?

2) What is the function of NOP Instruction?

3) What is the size of the ports of 8255?

4) What is the function of the control word register of 8255?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

65

EXPERIMENT NO: 8

PARALLEL COMMUNICATION BETWEEN TWO MICROPROCESSORS
USING 8255

AIM: Write an ALP for parallel communication between two microprocessors using 8255

TOOLS:

i. UXASM

ii. TKUP

iii. TKUP86 KIT

iv. FRC CABLE

PROGRAM: FOR DATA IN KIT

#INCLUDE "TKUP86.DEF"

ORG 0FFFF0H

JMPF 0F000H,0F000H

ORG 0FF000H

MOV AL,080H

MOVDX,CMD8255

OUT DX,AL

MOV AL,00H

MOV DX,PA8255

OUT DX,AL

MOV DX,PB8255

OUT DX,AL

MOV DX,PC8255

OUT DX,AL

RPT: MOV AL,47H

MOV DX,PA8255

OUT DX,AL

MOV DX,PB8255

OUT DX,AL

MOV DX,PC8255

OUT DX,AL

JMP RPT

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

66

PROGRAM: FOR DATA OUT KIT

#INCLUDE "TKUP86.DEF

ORG 0FFFF0H

JMPF 0F000H,0F000H

ORG 0FF000H

MOV AL,090H

MOVDX,CMD8255

OUT DX,AL

MOV AL,00H

MOV DX,PA8255

OUT DX,AL

MOV DX,PB8255

OUT DX,AL

MOV DX,PC8255

OUT DX,AL

RPT: MOV DX,PA8255

IN AL,DX

MOV [0200H],AL

MOV DX,PB8255

OUT DX,AL

MOV DX,PC8255

OUT DX,AL

 ̀ JMP RPT

RESULT:

Exercise Questions:

1) Write an assembly language program to transfer MRCET string in between two 8255 kits.

Viva Questions:

1) What is the function of IN Instruction?

2) What is the function of OUT Instruction?

3) What is the size of the ports of 8255?

4) What is the function of the control word register of 8255?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

67

EXPERIMENT NO: 9

PROGRAM FOR INTERFACING STEPPER TO 8086

(A) ROTATE THE STEPPER MOTOR IN ANTICLOCKWISE DIRECTION

; Connect 8255 Ports A to CNLED

;**** INCLUDE DEFINATION FILES NOW
#INCLUDE "TKUP86.DEF"

;****START CODING HERE

ORG 0FFFF0H
JMPF 0F000H,0F000H ; the basic reset jump
ORG 0FF000H

START MOV SP,STKPTR ; load stack pointer
CALL INIT8255 ; initialize 8255

LP1 MOV AL,01H ; use num1 for led count value
MOV DX,PA8255
OUT DX,AL ;
CALL DELAY ; call delay
MOV AL,02H ; use num1 for led count value
MOV DX,PA8255
OUT DX,AL
CALL DELAY ; call delay
MOV AL,04H ; use num1 for led count value
MOV DX,PA8255
OUT DX,AL
CALL DELAY ; call delay
MOV AL,08H ; use num1 for led count value
MOV DX,PA8255
OUT DX,AL
CALL DELAY ; call delay
JMP START ; restart again

;******* Delay module

DELAY NOP ;

MOV CX,03500H ; load Delay count = 0x3500
NOP ;

DLY1 NOP ;
LOOP DLY1 ;
RET ; end of delay

;******* initialize 8255

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

68

INIT8255
MOV AL,080H ; make all ports output
MOV DX, CMD8255
OUT DX,AL ; write to command register
MOV AL,00H ; clear all ports
MOV DX,PA8255
OUT DX,AL ;
MOV DX,PB8255
OUT DX,AL ;
MOV DX,PC8255
OUT DX,AL ;
RET ;

(B) ROTATE THE STEPPER MOTOR IN CLOCKWISE DIRECTION

;***** START CODING HERE

ORG 0FFFF0H
JMPF 0F000H,0F000H ; the basic reset jump

ORG 0FF000H

START MOV SP,STKPTR ; load stack pointer
CALL INIT8255 ; initialize 8255

LP1 MOV AL,08H ; use num1 for led count value
MOV DX,PA8255
OUT DX,AL
CALL DELAY ; call delay
MOV AL,04H ; use num1 for led count value
MOV DX,PA8255

OUT DX,AL
CALL DELAY ; call delay
MOV AL,02H ; use num1 for led count value
MOV DX,PA8255 ;
OUT DX,AL
CALL DELAY ; call delay
MOV AL,01H ; use num1 for led count value
MOV DX,PA8255
OUT DX,AL
CALL DELAY ; call delay
JMP START ; restart again

;******* Delay module

DELAY NOP

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

69

MOV CX,03500H ; load Delay count = 0x3500
NOP

DLY1 NOP
LOOP DLY1
RET ; end of delay

RESULT: INPUT:

OUTPUT:

;******* initialize 8255
INIT8255

MOV AL,080H ; make all ports output
MOV DX, CMD8255
OUT DX,AL ; write to command register
MOV AL,00H ; clear all ports
MOV DX,PA8255
OUT DX,AL
MOV DX,PB8255
OUT DX,AL
MOV DX,PC8255
OUT DX,AL
RET

Exercise Questions:

1) Write an assembly language program to rotate a stepper motor for 20steps in clockwise

direction?

Viva Questions:

1. Explain the principle of stepper motor.

2. How to calculate step angle?

3. What are the applications of stepper motor.

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

70

EXPERIMENT NO: 10

ARITHMETIC, LOGICAL AND BIT MANIPULATION INSTRUCTIONS OF 8051

AIM: Write an ALP for Arithmetic, logical and bit manipulation operations in 8051

TOOLS:

i. UXASM

ii. TKUP

iii. TKUP86 KIT

iv. FRC CABLE

A) PROGRAM: FOR ARITHMETIC INSTRUCTIONS OF 8051

;Connect P1 to CNLED1

#INCLUDE "TKUP52.DEF"

ORG 0000H

START: LJMP MAIN

ORG 0150H

MAIN MOV SP,#50H

MOV R0,#20H

MOV R1,#07H

MOV A,R0

ADD A,R1

MOV P1,A

LCALL DELAY

MOV A,R0

SUBB A,R1

MOV P1,A

LCALL DELAY

MOV A,R0

MOV 0F0H,R1

MUL AB

MOV P1,A

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

71

LCALL DELAY

MOV P1,0F0H

LCALL DELAY

MOV A,R0

MOV 0F0H,R1

DIV AB

MOV P1,A

LCALL DELAY

MOV P1,0F0H

LCALL DELAY

LJMP MAIN

DELAY NOP

MOV R4,#020H

DLY3 MOV R3,#0FFH

DLY2 MOV R2,#0FFH

NOP

DLY1 NOP

NOP

NOP

DJNZ R2,DLY1

DJNZ R3,DLY2

DJNZ R4,DLY3

RET ;

B) PROGRAM: FOR LOGICAL INSTRUCTIONS OF 8051

i) ;Connect P1 to CNLED1

#INCLUDE "TKUP52.DEF"

ORG 0000H

START: LJMP MAIN

ORG 0150H

MAIN MOV SP,#50H

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

72

MOV A,#35H

ANL A,#0FH

MOV P1,A

ACALL DLY

MOV A,#04H

ORL A,#30H

MOV P1,A

ACALL DLY

MOV A,#54H

XRL A,#78H

MOV P1,A

ACALL DLY

MOV A,#55H

CPL A

MOV P1,A

ACALL DLY

DLY NOP

NOP

MOV R4,#020H

DLY3 MOV R3,#0FFH

DLY2 MOV R2,#0FFH

NOP

DLY1 NOP

NOP

NOP

NOP

DJNZ R2,DLY1

DJNZ R3,DLY2

DJNZ R4,DLY3

RET

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

73

ii) ;Connect P1 to CNLED1

#INCLUDE "TKUP52.DEF"

ORG 0000H

START: LJMP MAIN

ORG 0150H

MAIN: MOV SP,#060H

MOV A,#0A5H

MOV P1,A

LCALL SFTDL

RR A

MOV P1,A

LCALL SFTDL

SWAP A

MOV P1,A

LCALL SFTDL

RL A

MOV P1,A

LCALL SFTDL

SETB C

RLC A

MOVP1,A

LCALL SFTDL

RRC A

MOV P1,A

LCALL SFTDL

LJMP MAIN

SFTDL MOV R4,#50H

DL3 MOV R5,#0FFH

DL2 MOV R6,#0FFH

DL1 DJNZ R6,DL1

DJNZ R5,DL2

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

74

DJNZ R4,DL3

RET

C) PROGRAM: FOR BIT MANIPULATION INSTRUCTIONS OF 8051
; Connect P1 to CNLED1

#INCLUDE "TKUP52.DEF"

ORG 0000H

START: LJMP MAIN

ORG 0150H

MAIN MOV SP,#50H

MOV P1,#00H

MOV C,00H

SETB C

MOV P1_7,C

LCALL SFTDL

CLR C

ANL C,00H

MOV P1_7,C

LCALL SFTDL

CPL C

MOV P1_3,C

LCALL SFTDL

ORL C,00H

MOV P1_7,C

LCALL SFTDL

LJMP MAIN

SFTDL MOV R4,#50H

DL3 MOV R5,#0FFH

DL2 MOV R6,#0FFH

DL1 DJNZ R6,DL1

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

75

DJNZ R5,DL2
DJNZ R4,DL3

RET

RESULT: INPUT:

OUTPUT:

Exercise Questions:

1) Write an assembly language program for the addition of 012H and 376H in 8051?

Viva Questions:

1) What are the ports of 8051?

2) What is the use of DJNZ instruction?

3) What are the bit manipulation instructions of 8051?

4) What are the flags of 8051?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

76

EXPERIMENT NO: 11

TIMER/COUNTERS IN 8051

AIM: Write an ALP to verify timer/counter operation in 8051

TOOLS: i) UXASM

Ii) TKUP

Iii) TKUP86 KIT

IV) FRC CABLE

PROGRAM:

; Connect P1 to CNLED1

#INCLUDE "TKUP52.DEF"

ORG 0000H

START: LJMP MAIN

ORG 0150H

MAIN: MOV SP,#060H

MOV TMOD,#01H

BACK: MOV TL0,#075H

MOV TH0,#0B8H

MOV P1,#0AAH

LCALL SFTDL

ACALL DELAY

MOV TL0,#00H

MOV TH0,#00H

MOV P1,#055H

ACALL DELAY

LCALL SFTDL

SJMP BACK

ORG 300H

DELAY: SETB TCON4

AGAIN: JNB TCON5,AGAIN

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

77

CLR TCON4

CLR TCON5

RET

SFTDL MOV R4,#10H

DL3 MOV R5,#0FFH

DL2 MOV R6,#0FFH

DL1 DJNZ R6,DL1

DJNZ R5,DL2

DJNZ R4,DL3

RET

RESULT: INPUT:

OUTPUT:

Exercise Questions:

1) Write a assembly language program for counting number of 1’s and 0’s in 34H?

Viva Questions:

1) What are timer/counter registers in 8051?

2) What is the size of timer/Counter?

3) When timer overflow occurs?

4) What are special functions registers of 8051?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

78

EXPERIMENT NO: 12

INTERRUPT HANDLING IN 8051

AIM: Write an ALP to verify the interrupt handling in 8051

TOOLS i) UXASM

ii)TKUP

iii) TKUP86 KIT

iv) FRC CABLE

PROGRAM:

#INCLUDE "TKUP52.DEF"

ORG 0000H

START: LJMP MAIN

ORG 0150H

MAIN MOV SP,#50H

 MOV IE,#85H

HERE MOV P1,#7EH

 SJMP HERE

 ORG 0003H ; INT0 ISR

 MOV P1,#0AAH

 LCALL DELAY

 LCALL DELAY

 LCALL DELAY

 RETI

 ORG 0013H ; INT1 ISR

 MOV P1,#0A5H

 LCALL DELAY

 LCALL DELAY

 RETI

DELAY NOP

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

79

MOV R4,#020H

DLY3 MOV R3,#0FFH

DLY2 MOV R2,#0FFH

DLY1 NOP

NOP

DJNZ R2,DLY1

DJNZ R3,DLY2

DJNZ R4,DLY3

RET

RESULT: INPUT:

OUTPUT:

Exercise Questions:

1) Write the program for interrupt handing of 8051 using PORT 0?

Viva Questions:

1) What are the interrupts of 8051?

2) What is the Priority among 8051 interrupts?

3) What are the interrupt registers of 8051?

4) What is the size of the interrupt registers of 8051?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

80

EXPERIMENT NO: 13

UART OPERATION IN 8051

AIM: To observe the UART operation in 8051

TOOLS: i) UXASM

ii) TKUP

iii) TKUP86 KIT

iv) FRC CABLE

PROGRAM:

; CONNECT THE RS232 FROM PC TO TKUP51 KIT

; CONNECT THE Tx PIN OF 8051 TO Rx OF MAX232 AND VICE VERSA

; CONNECT PORT1 TO CNLED

#INCLUDE "TKUP52.DEF"

ORG 0000H

START: LJMP MAIN

ORG 0150H

MAIN: MOV SP,#060H

MOV IE,#85H

MOV TMOD,#20H

MOV TH1,#0FAH

MOV SCON,#50H

SETB TCON6

RPT: MOV SBUF,#'Y'

HERE: JNB SCON1,HERE

CLR SCON1

MOV A,#'A'

MOV P1,A

SJMP RPT

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

81

RESULT: INPUT:

OUTPUT:

Exercise Questions:

1) Where do we prefer the serial communication & Why?

Viva Questions:

1) What is the full form of UART?

2) What is meant by Synchronous and Asynchronous communication?

3) What is the serial communication registers in 8051?

4) Which data communication method is supported by 8051?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

82

EXPERIMENT NO: 14

INTERFACING LCD TO 8051

AIM: Write an ALP for interfacing LCD to 8051

TOOLS:

I) UXASM

II) TKUP

III) TKUP86 KIT

IV) FRC CABLE

PROGRAM:

;CONNECT BH4 TO CNLCDC

;CONNECT BH6 TO CNLCDD

#INCLUDE "TKUP52.DEF"

ORG 0000H

START: LJMP MAIN

ORG 0150H

MAIN MOV SP,#060H

LCALL INIT8255

LOOP MOV DPTR,#CMDTBL

LCALL INIT_LCD

MOV DPTR,#STRTBL

LP1 MOV A,#0

MOVC A,@A+DPTR

CJNE A,#00,LP2

LCALL DELAY

LCALL DELAY

LCALL DELAY

LJMP MAIN

LP2 LCALL WR_DAT

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

83

INC DPTR

LCALL SDELAY

LJMP LP1

;*******LCD init module

INIT_LCD

MOV A,#0

MOVC A,@A+DPTR

CJNE A,#00,IL2

RET

IL2 LCALL WR_CMD

INC DPTR

LJMP INIT_LCD

;******* LCD Write CMD module

WR_CMDPUSH DPH

PUSH DPL

MOVDPTR,#PB8255

LCALL WRPORT

LCALL SDELAY

MOV A,#04

MOV DPTR,#PA8255

LCALL WRPORT

LCALL SDELAY

MOV A, #00

MOV DPTR,#PA8255

LCALL WRPORT

LCALL SDELAY

POP DPL

POP DPH

RET

;******* LCD Write Data module

WR_DAT PUSH DPH

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

84

PUSH DPL

MOV DPTR,#PB8255

LCALL WRPORT

LCALL SDELAY

MOV A,#05H

MOV DPTR,#PA8255

LCALL WRPORT

LCALL SDELAY

MOV A,#01H

MOV DPTR,#PA8255

LCALL WRPORT

LCALL SDELAY

POP DPL

POP DPH

RET

;******Write Port

WRPORT CLR P1_7

MOVX @DPTR,A

SETB P1_7

RET

;****** Read Port

RDPORT CLR P1_7

MOVX A,@DPTR

SETB P1_7

RET

;******* Delay module

SDELAYNOP

MOV R0,#0FFH

MOV R1,#01H

LJMP DLY1

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

85

NOP

DELAY NOP

MOV R0,#0FFH

MOV R1,#055H

NOP

DLY1 DJNZ R0,DLY1

MOV R0,#0FFH

DJNZ R1,DLY1

RET

;******* initialize 8255

INIT8255

MOV A,#080H

MOVDPTR,#CMD8255

LCALL WRPORT

RET

ORG 0500H

;******* initialize seven segment table

CMDTBL HEX 38,0E,02,01,00

STRTBL ASCII "HELLO ADM - TKUP"

ENDTBL HEX 00,00

RESULT: INPUT :

OUTPUT :

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

86

Viva Questions:

1) What are the special function register of 8051?

2) What is the function of accumulator register?

3) What is the function of CJNE instruction?

4) What is the function of MOVX instruction?

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

87

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

88

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

89

EXPERIMENT NO: 15

INTERFACING MATRIX/KEYBOARD TO 8051

AIM: Write an ALP for interfacing Matrix/keyboard to 8051

TOOLS: i) UXASM

ii) TKUP

iii) TKUP86 KIT

iv) FRC CABLE

PROGRAM:

;******* 8255_KBD

******* INCLUDE DEFINATION FILES NOW

; 1. Connect 8255 PA0-7 to CNMUX of L1C peripheral board

; 2. Connect 8255 PC0-7 to CNKEY of L1C peripheral board

; 3. Connect 8255 PB0-7 to CNSEG of L1C peripheral board

; 4. Motor one segment showing 0000->0001->....->000F->0000 (key press)

#INCLUDE "TKUP52.DEF"

ORG 0000H

START: LJMP MAIN

ORG 0150H

MAIN MOV SP,#060H

LCALL INIT8255

MOV DPTR,#NUM1

LCALL CLRMEM

MOV DPTR,#NUM2

LCALL CLRMEM

MOV DPTR,#NUM3

LCALL CLRMEM

NOP

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

90

LOOP LCALL SCANKBD

MOV DPTR,#NUM3

MOVX A,@DPTR

MOV DPTR,#SEGTBL

MOVC A,@A+DPTR

MOV DPTR,#PB8255

LCALL WRPORT

MOV A,#070H

MOV DPTR,#PA8255

LCALL WRPORT

LJMP LOOP

;******* MATRIX KBD SCAN module

;******* Output either E0,D0,B0,70 for Row 1,2,3,4

;******* Read PC port ended with 0x0F, expect 0F,0E,0D,0B,07

SCANKBD MOV A,#00H

SKLOOP MOVDPTR,#NUM1

MOVX @DPTR,A

MOV DPTR,#KBDTBL

MOVC A,@A+DPTR

CJNE A,#00,SKL1

RET

SKL1 MOV DPTR,#PC8255

LCALL WRPORT

MOV DPTR,#PC8255

LCALL RDPORT

ANL A,#0FH

CJNE A,#0FH,SKL2

MOV DPTR,#NUM1

MOVX A,@DPTR

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

91

INC A

LJMP SKLOOP

SKL2 LJMP GETKEY

;******* GETKEY module

GETKEY MOVDPTR,#NUM2

MOVX @DPTR,A

MOV DPTR,#RETTBL

MOVC A,@A+DPTR

MOV R0,A

MOV DPTR,#NUM1

MOVX A,@DPTR

MOV DPTR,#ROWTBL

MOVC A,@A+DPTR

ADD A,R0

MOV DPTR,#NUM3

MOVX @DPTR,A

RET

;****** Clear memory location

CLRMEM MOV A,#0

MOVX @DPTR,A

RET

WRPORT CLR P1_7

MOVX @DPTR,A

SETB P1_7

RET

;****** Read Port

RDPORT CLR P1_7

MOVX A,@DPTR

SETB P1_7

RET

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

92

;******* Delay module

SDELAYNOP

MOV R0,#0FFH

MOV R1,#01H

LJMP DLY1

NOP

DELAY NOP

MOV R0,#0FFH ; load lsb of delay=0x34FF

MOV R1,#055H ; load msb

NOP

DLY1 DJNZ R0,DLY1

MOV R0,#0FFH ; decrement msb count

DJNZ R1,DLY1

RET ; end of delay

;******* initialize 8255

INIT8255

MOV A,#081H ; make all ports output

MOV DPTR,#CMD8255 ; write to command register

LCALL WRPORT

RET

ORG 0500H

;******* initialize seven segment table

SEGTBL HEX 3F,06,5B,4F,66,6D,7D,07,7F,6F,77,7C,39,5E,79,71,00

KBDTBL HEX E0,D0,B0,70,00

RETTBLHEX 00,00,00,00,00,00,00,03,00,00,00,02,00,01,00,00,00

ROWTBL HEX 00, 04, 08, 0C, 00

RESULT: INPUT:

OUTPUT:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

93

Exercise Question:

1) Write an assembly language program for the display of MRCET string on LCDby using 8051

Viva Questions:

1) What are the special function register of 8051?

2) What is the function of accumulator register?
3) How many no. of pins available for 8051?

4) What is the function of SP register

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

94

OBSERVATION:

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

95

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

96

R22 Autonomous III B. Tech I Semester MPMC Lab Manual

97

	(R20A0487)
	(Autonomous Institution – UGC, Govt. of India)
	ELECTRONICS & COMMUNICATION ENGINEERING
	MISSION
	QUALITY POLICY
	PEO1: PROFESSIONALISM & CITIZENSHIP
	PEO2: TECHNICAL ACCOMPLISHMENTS
	PEO3: INVENTION, INNOVATION AND CREATIVITY
	PEO4: PROFESSIONAL DEVELOPMENT
	PEO5: HUMAN RESOURCE DEVELOPMENT
	PSO1
	PSO2
	PSO3
	PROGRAM OUTCOMES (POs)
	Course Objectives:

	LABORATORY RULES
	General Rules of Conduct in Laboratories:
	Specific Safety Rules for Laboratories:

	1. INTRODUCTION TO MASM
	ASSEMBLER
	LINKER
	DEBUGGER
	DEBUGGER FUNCTIONS:
	The DOS -Debugger:

	COMMAND SYNTAX
	MS-MASM:
	MICROPROCESSOR LAB EXECUTION PROCEDURE
	STEP1: Opening the DOS prompt
	STEP2: Checking the masm installation
	STEP3: Directory changing (create a folder with your branch and no in D drive)
	STEP4: writing the program
	STEP5: Assembling, Linking and executing the program
	STEP6: Copying list file (common for all programs):

	EXPERIMENT NO.2
	FLOW CHART:
	FLOW CHART: (1)
	ALGORITHM:
	FLOW CHART: (2)
	PROGRAM:
	(D) 16-bit Division using different addressing modes ALGORITHM:

	FLOW CHART: (3)
	Result:
	UNSIGNED NUMBERS INPUT: OPR1 =

	Exercise Questions:
	Viva Question:

	OBSERVATION:
	ALGORITHM: (1)
	Result:

	DESCENDING ORDER
	Result:
	Exercise Questions:
	Viva Questions:

	ALGORITHM: (2)
	FLOW CHART: (4)
	Program:
	Exercise Questions:
	Viva Questions:

	ALGORITHM: (3)
	FLOW CHART: (5)
	RESULT:
	B) REVERSE STRING
	ALGORITHM: (4)
	FLOW CHART: (6)
	RESULT:

	C) LENGTH OF THE STRING
	ALGORITHM: (5)
	FLOW CHART: (7)
	Program:

	D) STRING COMPARISON
	ALGORITHM: (6)
	FLOW CHART: (8)
	Program:

	(E) STRING INSERTION
	ALGORITHM: (7)
	FLOW CHART: (9)
	Program:
	RESULT:

	(F) STRING DELETION
	RESULT:
	Exercise Questions:
	Viva Questions:

	PART-B
	INTRODUCTION:
	Procedure for TKµP

	EXPERIMENT NO: 6
	TOOLS:
	PROGRAM:
	Exercise Questions:
	Viva Questions:
	TOOLS:

	PROGRAM:
	INTERFACING DAC TO 8086
	TOOLS:

	PROGRAM: (1)
	Exercise Questions:
	Viva Questions:
	TOOLS:
	PROGRAM: FOR DATA IN KIT
	PROGRAM: FOR DATA OUT KIT

	Exercise Questions: (1)
	Viva Questions: (1)
	(A) ROTATE THE STEPPER MOTOR IN ANTICLOCKWISE DIRECTION
	(B) ROTATE THE STEPPER MOTOR IN CLOCKWISE DIRECTION

	Exercise Questions: (2)
	Viva Questions: (2)
	TOOLS:
	A) PROGRAM: FOR ARITHMETIC INSTRUCTIONS OF 8051
	B) PROGRAM: FOR LOGICAL INSTRUCTIONS OF 8051
	C) PROGRAM: FOR BIT MANIPULATION INSTRUCTIONS OF 8051

	Exercise Questions: (3)
	Viva Questions: (3)
	PROGRAM:

	Exercise Questions: (4)
	Viva Questions: (4)

	OBSERVATION: (1)
	PROGRAM:
	Exercise Questions:
	Viva Questions:
	PROGRAM:
	; CONNECT PORT1 TO CNLED

	Exercise Questions: (1)
	Viva Questions: (1)
	TOOLS:

	PROGRAM: (2)
	Viva Questions:

	OBSERVATION: (2)
	PROGRAM:
	Exercise Question:
	Viva Questions:

